MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES

Chromaticity of a Family of K_{4}-Homeomorphs with Girth 9, II

N.S.A. Karim ${ }^{1}$, R. Hasni ${ }^{* 2}$, and G.C. Lau ${ }^{3}$
${ }^{1}$ Universiti Pendidikan Sultan Idris, Malaysia
${ }^{2}$ Universiti Malaysia Terengganu, Malaysia
${ }^{3}$ Universiti Teknologi MARA (Segamat Campus), Malaysia

E-mail: hroslan@umt.edu.my
${ }^{*}$ Corresponding author

Abstract

For a graph G, let $P(G, \lambda)$ denote the chromatic polynomial of G. Two graphs G and H are chromatically equivalent (or simply χ-equivalent), denoted by $G \sim H$, if $P(G, \lambda)=P(H, \lambda)$. A graph G is chromatically unique (or simply χ-unique) if for any graph H such as $H \sim G$, we have $H \cong G$, i.e, H is isomorphic to G. A K_{4}-homeomorph is a subdivision of the complete graph K_{4}. In this paper, we investigate the chromaticity of one family of K_{4}-homeomorphs which has girth 9 , and give sufficient and necessary condition for the graph in the family to be chromatically unique.

Keywords: Chromatic polynomial, Chromatically unique, K_{4}-homeomorphs.

1. Introduction

All graphs considered here are simple graphs. For such a graph G, let $P(G, \lambda)$ denote the chromatic polynomial of G. Two graphs G and H are chromatically equivalent (or simply χ-equivalent), denoted by $G \sim H$, if $P(G)=,P(H$,$) . A graph G$ is chromatically unique (or simply χ-unique) if for any graph H such as $H \sim G$, we have $H \cong G$, i.e, H is isomorphic to G.

Figure 1: $K_{4}(a, b, c, d, e, f)$

A K_{4}-homeomorph is a subdivision of the complete graph K_{4}. Such a homeomorph is denoted by $K_{4}(a, b, c, d, e, f)$ if the six edges of K_{4} are replaced by the six paths of length a, b, c, d, e, f, respectively, as shown in Figure 1. So far, the chromaticity of K_{4}-homeomorphs with girth g, where $3 \leq g \leq 7$ has been studied by many authors (see Chen and Ouyang (1997), Li (1987), Peng (2004), Peng (2008), Peng (2012)). Also the chromaticity of K_{4}-homeomorphs with at least 2 paths of length 1 has been completely determined (Guo and Whitehead Jr. (1997), Li (1987), Peng and Liu (2002), Xu (1993)). Recently, Shi et al. (2012) studied the chromaticity of one family of K_{4}-homeomorphs with girth 8, i.e., $K_{4}(2,3,3, d, e, f)$. He then solved completely the chromaticity of K_{4}-homeomorphs with girth 8 (Shi (2011)). Ren (2002) has also completely determined the chromaticity of K_{4}-homeomorphs with exactly 3 paths of same length. Recently, Catada-Ghimire and Hasni (2014) investigated the chromaticity of K_{4}-homeomorphs with exactly 2 paths of length 2. The chromaticity of one family of K_{4}-homeomorphs with girth 9 , that

Figure 2: $K_{4}(1,4,4, d, e, f)$
is, the graph $K_{4}(2,3,4, d, e, f)$ has been studied by Karim and Lau (2014). Hence, to completely determine the chromaticity of K_{4}-homeomorphs with girth 9 , there are only 5 more types to consider, that is, $K_{4}(1,2,6, d, e, f)$, $K_{4}(1,3,5, d, e, f), K_{4}(1,4,4, d, e, f), K_{4}(1,2, c, 3, e, 3)$ and $K_{4}(1,3, c, 2, e, 3)$. In this paper, we consider the chromaticity of one type of them, that is, the graph $K_{4}(1,4,4, d, e, f)$ (see Figure 2).

2. Preliminary Results

In this section, we give some known results used in the sequel.
Lemma 2.1. Assume that G and H are χ-equivalent. Then
(1) $|V(G)|=|V(H)|,|E(G)|=|E(H)|$ (see Koh and Teo (1990));
(2) G and H have the same girth and same number of cycles with length equal to their girth (see Xu (1991));
(3) If G is a K_{4}-homeomorph, then H must itself be a K_{4}-homeomorph (see Chao and Zhao (1983));
(4) Let $G=K_{4}(a, b, c, d, e, f)$ and $H=K_{4}\left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}, e^{\prime}, f^{\prime}\right)$, then
(i) $\min (a, b, c, d, e, f)=\min \left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}, e^{\prime}, f^{\prime}\right)$ and the number of times that this minimum occurs in the list $\{a, b, c, d, e, f\}$ is equal to the number of times that this minimum occurs in the list $\left\{a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}, e^{\prime}, f^{\prime}\right\}$ (see Whitehead Jr. and Zhao (1984));
(ii) if $\{a, b, c, d, e, f\}=\left\{a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}, e^{\prime}, f^{\prime}\right\}$ as multisets, then $H \cong G$ (see Li (1987).
Lemma 2.2. Karim and Lau (2014)) Let K_{4}-homeomorphs $K_{4}(1,4,4, d, e, f)$ and $K_{4}\left(2,3,4, d^{\prime}, e^{\prime}, f^{\prime}\right)$ be chromatically equivalent, then
$K_{4}(1,4,4,4,2,6) \sim K_{4}(2,3,4,1,7,4), \quad K_{4}(1,4,4,6,2,6) \sim K_{4}(2,3,4,1,5,8)$.
Lemma 2.3. (Aklan (2012)) Let K_{4}-homeomorphs $K_{4}(1,4,4, d, e, f)$ and $K_{4}\left(1,4,4, d^{\prime}, e^{\prime}, f^{\prime}\right)$ be chromatically equivalent, then

$$
K_{4}(1,4,4, i, i+1, i+5) \sim K_{4}(1,4,4, i+2, i, i+4) .
$$

where $i \geq 2$.
Lemma 2.4. Ren (2002)) Let $G=K_{4}(a, b, c, d, e, f)$ with exactly three of a, b, c, d, e, f are the same. Then G is not chromatically unique if and only if G is isomorphic to $K_{4}(s, s, s-2,1,2, s)$ or $K_{4}(s, s-2, s, 2 s-2,1, s)$ or $K_{4}(t, t, 1,2 t, t+2, t)$ or $K_{4}(t, t, 1,2 t, t-1, t)$ or $K_{4}(t, t+1, t, 2 t+1,1, t)$ or $K_{4}(1, t, 1, t+1,3,1)$ or $K_{4}(1,1, t, 2, t+2,1)$, where $s \geq 3, t \geq 2$.
Lemma 2.5. Catada-Ghimire and Hasni (2014)) A K_{4}-homeomorphic graph with exactly two path of length two is χ-unique if and only if it is not isomorphic to $K_{4}(1,2,2,4,1,1)$ or $K_{4}(4,1,2,1,2,4)$ or $K_{4}(1, s+2,2,1,2, s)$ or $K_{4}(1,2,2, t+2, t+2, t)$ or $K_{4}(1,2,2, t, t+1, t+3)$ or $K_{4}(3,2,2, r, 1,5)$ or $K_{4}(1, r, 2,4,2,4)$ or $K_{4}(3,2,2, r, 1, r+3)$ or $K_{4}(r+2,2,2,1,4, r)$ or $K_{4}(r+$ $3,2,2, r, 1,3)$ or $K_{4}(4,2,2,1, r+2, r)$ or $K_{4}(3,4,2,4,2,6)$ or $K_{4}(3,4,2,4,2,8)$ or $K_{4}(3,4,2,8,2,4)$ or $K_{4}(7,2,2,3,4,5)$ or $K_{4}(5,2,2,3,4,7)$ or $K_{4}(8,2,2,3,4,6)$ or $K_{4}(5,2,2,9,3,4)$ or $K_{4}(5,2,2,5,3,4)$, where $r \geq 3, s \geq 3, t \geq 3$.

3. Main Results

In this section, we present our main results. In the following, we only consider graphs with at most a path of length 1 and have girth 9 .

Lemma 3.1. If G is of type of $K_{4}(1,4,4, d, e, f)$, and H is of type of $K_{4}\left(1,3,5, d^{\prime}, e^{\prime}, f^{\prime}\right)$, then G is not chromatically equivalent to H except that

$$
K_{4}(1,4,4,3,5,8) \sim K_{4}(1,3,5,5,7,4)
$$

$$
\begin{aligned}
& K_{4}(1,4,4,6,3,7) \sim K_{4}(1,3,5,4,4,8), \\
& K_{4}(1,4,4,6,3,8) \sim K_{4}(1,3,5,4,9,4), \\
& K_{4}(1,4,4,6,2,6) \sim K_{4}(1,3,5,2,4,8)
\end{aligned}
$$

Proof. Let G and H be two graphs such that $G \cong K_{4}(1,4,4, d, e, f)$ and $H \cong K_{4}\left(1,3,5, d^{\prime}, e^{\prime}, f^{\prime}\right)$. Let

$$
\begin{aligned}
Q\left(K_{4}(a, b, c, d, e, f)\right)= & -(s+1)\left(s^{a}+s^{b}+s^{c}+s^{d}+s^{e}+s^{f}\right)+s^{a+d}+s^{b+f}+ \\
& s^{c+e}+s^{a+b+e}+s^{b+d+c}+s^{a+c+f}+s^{d+e+f}
\end{aligned}
$$

Let $s=1-\lambda$ and x is the number of edges in G. From Shi et al. (2012), we have the chromatic polynomial of K_{4}-homeomorphs $K_{4}(a, b, c, d, e, f)$ is as follows:
$P\left(K_{4}(a, b, c, d, e, f)=(-1)^{x-1} \frac{s}{(s-1)^{2}}\left[\left(s^{2}+3 s+2\right)+Q\left(K_{4}(a, b, c, d, e, f)\right)-s^{x-1}\right)\right]$.

Hence $P(G)=P(H)$ if and only if $Q(G)=Q(H)$. We solve the equation $Q(G)=Q(H)$ to get all solutions. Let the lowest remaining power and the highest remaining power be denoted by l.r.p. and h.r.p., respectively.

As $G \cong K_{4}(1,4,4, d, e, f)$ and $H \cong K_{4}\left(1,3,5, d^{\prime}, e^{\prime}, f^{\prime}\right)$, then

$$
\begin{aligned}
Q(G)= & -(s+1)\left(s+s^{4}+s^{4}+s^{d}+s^{e}+s^{f}\right)+s^{d+1}+s^{f+4}+ \\
& s^{e+4}+s^{e+5}+s^{d+8}+s^{f+5}+s^{d+e+f} \\
Q(H)= & -(s+1)\left(s+s^{3}+s^{5}+s^{d^{\prime}}+s^{e^{\prime}}+s^{f^{\prime}}\right)+s^{d^{\prime}+1}+s^{f^{\prime}+3}+ \\
& s^{e^{\prime}+5}+s^{e^{\prime}+4}+s^{d^{\prime}+8}+s^{f^{\prime}+6}+s^{d^{\prime}+e^{\prime}+f^{\prime}}
\end{aligned}
$$

By symmetry of $K_{4}(1,4,4, d, e, f)$, we can assume that $e \leq f$. From Lemma 2.1 (1),

$$
\begin{equation*}
d+e+f=d^{\prime}+e^{\prime}+f^{\prime} \tag{1}
\end{equation*}
$$

$Q(G)=Q(H)$ yields

$$
\begin{aligned}
Q_{1}(G)= & -s^{4}-s^{5}-s^{d}-s^{e}-s^{f}-s^{e+1}-s^{f+1}+ \\
& s^{d+8}+s^{e+4}+s^{e+5}+s^{f+4}+s^{f+5} . \\
Q_{1}(H)= & -s^{3}-s^{6}-s^{d^{\prime}}-s^{e^{\prime}}-s^{f^{\prime}}-s^{e^{\prime}+1}-s^{f^{\prime}+1}+ \\
& s^{d^{\prime}+8}+s^{e^{\prime}+4}+s^{e^{\prime}+5}+s^{f^{\prime}+3}+s^{f^{\prime}+6} .
\end{aligned}
$$

Comparing the l.r.p in $Q_{1}(G)$ and the l.r.p in $Q_{1}(H)$, we have $d=3$ or $e=2$ or $e=3$. There are three cases to be considered.
$\underline{\text { Case A }} d=3$. We obtain the following after simplification.

$$
\begin{aligned}
& Q_{2}(G)=-s^{4}-s^{5}-s^{e}-s^{f}-s^{e+1}-s^{f+1}+s^{11}+s^{e+4}+s^{e+5}+s^{f+4}+s^{f+5}, \\
& \begin{array}{c}
Q_{2}(H) \\
s^{f^{\prime}+3}+s^{f^{\prime}+6} .
\end{array} s^{6}-s^{d^{\prime}}-s^{e^{\prime}}-s^{f^{\prime}}-s^{e^{\prime}+1}-s^{f^{\prime}+1}+s^{d^{\prime}+8}+s^{e^{\prime}+4}+s^{e^{\prime}+5}+
\end{aligned}
$$

By considering the h.r.p in $Q_{2}(G)$, we have the h.r.p in $Q_{2}(G)$ is 11 or $f+5$. The h.r.p in $Q_{2}(H)$ is $d^{\prime}+8$ or $e^{\prime}+5$ or $f^{\prime}+6$. There are two cases to be considered.

Case 1 The h.r.p in $Q_{2}(G)$ is 11 . There are three cases to be considered.
Case 1.1 If $d^{\prime}+8=11$, then $d^{\prime}=3$. We have the following after simplification.

$$
\begin{aligned}
& Q_{3}(G)=-s^{4}-s^{5}-s^{e}-s^{f}-s^{e+1}-s^{f+1}+s^{e+4}+s^{e+5}+s^{f+4}+s^{f+5}, \\
& Q_{3}(H)=-s^{3}-s^{6}-s^{e^{\prime}}-s^{f^{\prime}}-s^{e^{\prime}+1}-s^{f^{\prime}+1}+s^{e^{\prime}+4}+s^{e^{\prime}+5}+s^{f^{\prime}+3}+s^{f^{\prime}+6} .
\end{aligned}
$$

Comparing the h.r.p in $Q_{3}(G)$ and the h.r.p in $Q_{3}(H)$, we have $f+5=e^{\prime}+5$ or $f+5=f^{\prime}+6$.

If $f+5=e^{\prime}+5$, then $f=e^{\prime}$. By Equation (1), we get $e=f^{\prime}$, then
$Q_{3}(G) \neq Q_{3}(H)$, a contradiction.

If $f+5=f^{\prime}+6$, then $f=f^{\prime}+1$. By Equation (1), we get $e+1=e^{\prime}$. We obtain the following after simplification.

$$
\begin{aligned}
& Q_{4}(G)=-s^{4}-s^{5}-s^{e}-s^{f+1}+s^{e+4}+s^{f+4} \\
& Q_{4}(H)=-s^{3}-s^{6}-s^{e+2}-s^{f-1}+s^{e+6}+s^{f+2}
\end{aligned}
$$

Then we have $e=3, f=5, e^{\prime}=4$ and $f^{\prime}=4$. Thus, $G \cong H$.
Case 1.2 If $e^{\prime}+5=11$, then $e^{\prime}=6$. We have the following after simplification.

$$
\begin{aligned}
& Q_{5}(G)=-s^{4}-s^{5}-s^{e}-s^{f}-s^{e+1}-s^{f+1}+s^{e+4}+s^{e+5}+s^{f+4}+s^{f+5} \\
& Q_{5}(H)=-s^{6}-s^{6}-s^{7}-s^{d^{\prime}}-s^{f^{\prime}}-s^{f^{\prime}+1}+s^{10}+s^{d^{\prime}+8}+s^{f^{\prime}+3}+s^{f^{\prime}+6}
\end{aligned}
$$

Comparing the l.r.p in $Q_{5}(G)$ and the l.r.p in $Q_{5}(H)$, we have $d^{\prime}=4$ or $f^{\prime}=4$ or $f^{\prime}=3$.

Case 1.2.1 $d^{\prime}=4$. We obtain the following after simplification.

$$
\begin{aligned}
& Q_{6}(G)=-s^{5}-s^{e}-s^{f}-s^{e+1}-s^{f+1}+s^{e+4}+s^{e+5}+s^{f+4}+s^{f+5}, \\
& Q_{6}(H)=-s^{6}-s^{6}-s^{7}-s^{f^{\prime}}-s^{f^{\prime}+1}+s^{10}+s^{12}+s^{f^{\prime}+3}+s^{f^{\prime}+6} .
\end{aligned}
$$

Comparing the l.r.p in $Q_{6}(G)$ and the l.r.p in $Q_{6}(H)$, we have $f^{\prime}=4$ or $f^{\prime}=5$. It is easy to handle these cases in the same fashion as in Case 1.1, and we obtain $Q_{6}(G) \neq Q_{6}(H)$, a contradiction.

Case 1.2.2 $f^{\prime}=4$. We obtain the following after simplification.

$$
\begin{aligned}
& Q_{7}(G)=-s^{e}-s^{f}-s^{e+1}-s^{f+1}+s^{e+4}+s^{e+5}+s^{f+4}+s^{f+5} \\
& Q_{7}(H)=-s^{6}-s^{6}-s^{d^{\prime}}+s^{10}+s^{10}+s^{d^{\prime}+8}
\end{aligned}
$$

Comparing the h.r.p in $Q_{7}(G)$ and the h.r.p in $Q_{7}(H)$, we have $f+5=d^{\prime}+8$. So $f=d^{\prime}+3$, then we get $Q_{7}(G) \neq Q_{7}(H)$, a contradiction.

Case 1.2.3 $f^{\prime}=3$. We obtain the following after simplification.

$$
\begin{aligned}
& Q_{8}(G)=-s^{5}-s^{e}-s^{f}-s^{e+1}-s^{f+1}+s^{e+4}+s^{e+5}+s^{f+4}+s^{f+5} \\
& Q_{8}(H)=-s^{3}-s^{6}-s^{7}-s^{d^{\prime}}+s^{9}+s^{10}+s^{d^{\prime}+8}
\end{aligned}
$$

Similar to Case 1.2.2, we get $Q_{8}(G) \neq Q_{8}(H)$, a contradiction.
Case 1.3 If $f^{\prime}+6=11$, then $f^{\prime}=5$. We have the following after simplification.

$$
\begin{aligned}
& Q_{9}(G)=-s^{4}-s^{e}-s^{f}-s^{e+1}-s^{f+1}+s^{e+4}+s^{e+5}+s^{f+4}+s^{f+5} \\
& Q_{9}(H)=-2 s^{6}-s^{d^{\prime}}-s^{e^{\prime}}-s^{e^{\prime}+1}+s^{8}+s^{d^{\prime}+8}+s^{e^{\prime}+4}+s^{e^{\prime}+5}
\end{aligned}
$$

Comparing the l.r.p in $Q_{9}(G)$ and the l.r.p in $Q_{9}(H)$, we have $d^{\prime}=4$ or $e^{\prime}=4$ or $e^{\prime}=3$.

Case 1.3.1 If $d^{\prime}=4$. We obtain the following after simplification.

$$
\begin{aligned}
& Q_{10}(G)=-s^{e}-s^{f}-s^{e+1}-s^{f+1}+s^{e+4}+s^{e+5}+s^{f+4}+s^{f+5}, \\
& Q_{10}(H)=-2 s^{6}-s^{e^{\prime}}-s^{e^{\prime}+1}+s^{8}+s^{12}+s^{e^{\prime}+4}+s^{e^{\prime}+5} .
\end{aligned}
$$

Comparing the h.r.p in $Q_{10}(G)$ and the h.r.p in $Q_{10}(H)$, we have $f+5=12$ or $f+5=e^{\prime}+5$.

If $f+5=12$, so $f=7$. From Equation (1), we get $e+1=e^{\prime}$. We then obtain $Q_{10}(G) \neq Q_{10}(H)$, a contradiction.

If $f+5=e^{\prime}+5$, so $f=e^{\prime}$. From Equation (1), we get $e=6$. We then obtain $Q_{10}(G) \neq Q_{10}(H)$, a contradiction.

Case 1.3.2 If $e^{\prime}=4$. We obtain the following after simplification.

$$
\begin{aligned}
& Q_{11}(G)=-s^{e}-s^{f}-s^{e+1}-s^{f+1}+s^{e+4}+s^{e+5}+s^{f+4}+s^{f+5}, \\
& Q_{11}(H)=-s^{5}-2 s^{6}-s^{d^{\prime}}+2 s^{8}+s^{9}+s^{d^{\prime}+8}
\end{aligned}
$$

Comparing the h.r.p in $Q_{11}(G)$ and the h.r.p in $Q_{11}(H)$, we have $f+5=$ $d^{\prime}+8$, so $f=d^{\prime}+3$. We get $Q_{11}(G) \neq Q_{11}(H)$, a contradiction.

Case 1.3.3 If $e^{\prime}=3$. We obtain the following after simplification.

$$
\begin{aligned}
& Q_{12}(G)=-s^{e}-s^{f}-s^{e+1}-s^{f+1}+s^{e+4}+s^{e+5}+s^{f+4}+s^{f+5}, \\
& Q_{12}(H)=-s^{3}-2 s^{6}-s^{d^{\prime}}+s^{7}+2 s^{8}+s^{d^{\prime}+8} .
\end{aligned}
$$

Similar to Case 1.3.2, we get $Q_{12}(G) \neq Q_{12}(H)$, a contradiction.

Case 2 The h.r.p in $Q_{2}(G)$ is $f+5$. There are three cases to be considered.

Case 2.1 $f+5=d^{\prime}+8$. From $Q_{2}(G)$ and $Q_{2}(H)$, we obtain the following after simplification.

$$
\begin{aligned}
& Q_{13}(G)=-s^{4}-s^{5}-s^{e}-s^{f}-s^{e+1}-s^{f+1}+s^{11}+s^{e+4}+s^{e+5}+s^{f+4}, \\
& Q_{13}(H)=-s^{6}-s^{d^{\prime}}-s^{e^{\prime}}-s^{f^{\prime}}-s^{e^{\prime}+1}-s^{f^{\prime}+1}+s^{e^{\prime}+4}+s^{e^{\prime}+5}+s^{f^{\prime}+3}+s^{f^{\prime}+6} .
\end{aligned}
$$

Comparing the l.r.p in $Q_{13}(G)$ and the l.r.p in $Q_{13}(H)$, we have $d^{\prime}=4$ or $e^{\prime}=4$ or $f^{\prime}=4$ or $e^{\prime}=3$ or $f^{\prime}=3$.

Case 2.1.1 $d^{\prime}=4$. From Equation (1), we get $f=d^{\prime}+3$, so $f=7$. We obtain the following after simplification.

$$
\begin{aligned}
& Q_{14}(G)=-s^{5}-s^{7}-s^{8}-s^{e}-s^{e+1}+2 s^{11}+s^{e+4}+s^{e+5} \\
& Q_{14}(H)=-s^{6}-s^{e^{\prime}}-s^{f^{\prime}}-s^{e^{\prime}+1}-s^{f^{\prime}+1}+s^{e^{\prime}+4}+s^{e^{\prime}+5}+s^{f^{\prime}+3}+s^{f^{\prime}+6}
\end{aligned}
$$

Comparing the l.r.p in $Q_{14}(G)$ and the l.r.p in $Q_{14}(H)$, we have $e^{\prime}=5$ or $f^{\prime}=5$ or $e^{\prime}=4$ or $f^{\prime}=4$.

If $e^{\prime}=5$, by Equation (1), we get $e+1=f^{\prime}$, then $Q_{14}(G) \neq Q_{14}(H)$, a contradiction.

If $f^{\prime}=5$, by Equation (1), we get $e+1=e^{\prime}$, then $Q_{14}(G) \neq Q_{14}(H)$, a contradiction.

If $e^{\prime}=4$, by Equation (1), we get $e+2=f^{\prime}$, then $Q_{14}(G) \neq Q_{14}(H)$, a contradiction.

If $f^{\prime}=4$, by Equation (1), we get $e+2=e^{\prime}$, then $Q_{14}(G) \neq Q_{14}(H)$, a contradiction.

Case 2.1.2 $e^{\prime}=4$. From Equation (1), we get $f=d^{\prime}+3$, so $f=7$. We obtain the following after simplification.

$$
\begin{aligned}
& Q_{15}(G)=-s^{e}-s^{f}-s^{e+1}-s^{f+1}+s^{11}+s^{e+4}+s^{e+5}+s^{f+4} \\
& Q_{15}(H)=-s^{6}-s^{d^{\prime}}-s^{f^{\prime}}-s^{f^{\prime}+1}+s^{8}+s^{9}+s^{f^{\prime}+3}+s^{f^{\prime}+6}
\end{aligned}
$$

Comparing the h.r.p in $Q_{15}(G)$ and the h.r.p in $Q_{15}(H)$, we have $f^{\prime}+6=11$ or $f^{\prime}+6=f+4$ or $e+5=f^{\prime}+6$.

If $f^{\prime}+6=11$, so $f^{\prime}=5$. By Equation (1), we get $e=3$, then $Q_{15}(G) \neq$ $Q_{15}(H)$, a contradiction.

If $f^{\prime}+6=f+4$, so $f=f^{\prime}+2$. By Equation (1), we get $e+1=d^{\prime}$, then $Q_{15}(G) \neq Q_{15}(H)$, a contradiction.

If $f^{\prime}+6=e+5$, so $f^{\prime}+1=e$. By Equation (1), $f=d^{\prime}$, and thus $Q_{15}(G) \neq Q_{15}(H)$, a contradiction.

Case 2.1.3 $f^{\prime}=4$. We obtain the following after simplification.

$$
\begin{aligned}
& Q_{16}(G)=-s^{e}-s^{f}-s^{e+1}-s^{f+1}+s^{11}+s^{e+4}+s^{e+5}+s^{f+4}, \\
& Q_{16}(H)=-s^{6}-s^{d^{\prime}}-s^{e^{\prime}}-s^{e^{\prime}+1}+s^{7}+s^{10}+s^{e^{\prime}+4}+s^{e^{\prime}+5} .
\end{aligned}
$$

Comparing the h.r.p in $Q_{16}(G)$ and the h.r.p in $Q_{16}(H)$, we have $e+5=10$ or $f+4=10$ or $e^{\prime}+5=11$ or $e^{\prime}+5=e+5$ or $e^{\prime}+5=f+4$.

Case 2.1.3.1 $e+5=10$, so $e=5$, by Equation (1), we get $e^{\prime}=7$. Note that $f=d^{\prime}+3$. We obtain the following after simplification.

$$
Q_{17}(G)=-s^{5}-s^{f}-s^{f+1}+s^{9}+s^{f+4}, Q_{17}(H)=-s^{f-3}-s^{8}+s^{12}
$$

Thus, we have $f=8$ and $d^{\prime}=5$. We then obtain the solution where G is isomorphic to $K_{4}(1,4,4,3,5,8)$ and H is isomorphic to $K_{4}(1,3,5,5,7,4)$. That is

$$
K_{4}(1,4,4,3,5,8) \sim K_{4}(1,3,5,5,7,4)
$$

Case 2.1.3.2 $f+4=10$, so $f=6$, and from $f=d^{\prime}+3$, we have $d^{\prime}=3$. By Equation (1), we obtain $e+2=e^{\prime}$. We get $Q_{16}(G) \neq Q_{16}(H)$, a contradiction.

Case 2.1.3.3 $e^{\prime}+5=11$, so $e^{\prime}=6$, by Equation (1), we obtain $e=4$. We then get $Q_{16}(G) \neq Q_{16}(H)$, a contradiction.

Case 2.1.3.4 $e+5=e^{\prime}+5$, so $e=e^{\prime}$. We then get $Q_{16}(G) \neq Q_{16}(H)$, a contradiction.

Case 2.1.3.5 $f+4=e^{\prime}+5$, so $f=e^{\prime}+1$. We obtain the following after simplification.

$$
\begin{aligned}
& Q_{18}(G)=-s^{e}-s^{e+1}-s^{f+1}+s^{11}+s^{e+4}+s^{e+5} \\
& Q_{18}(H)=-s^{6}-s^{d^{\prime}}-s^{e^{\prime}}+s^{7}+s^{10}+s^{f+3}
\end{aligned}
$$

Comparing the h.r.p in $Q_{18}(G)$ and the h.r.p in $Q_{18}(H)$, we have $f+3=11$ or $e+5=10$ or $e+5=f+3$.

If $f+3=11$, so $f=8$. After simplification of $Q_{18}(G)$ and $Q_{18}(H)$, we have $e=d^{\prime}=5$ and $e^{\prime}=7$. We then obtain the solution where G is isomorphic to $K_{4}(1,4,4,3,5,8)$ and H is isomorphic to $K_{4}(1,3,5,5,7,4)$, that is

$$
K_{4}(1,4,4,3,5,8) \sim K_{4}(1,3,5,5,7,4)
$$

If $e+5=10$, so $e=5$. We then obtain the solution where G is isomorphic to $K_{4}(1,4,4,3,5,8)$ and H is isomorphic to $K_{4}(1,3,5,5,7,4)$, that is

$$
K_{4}(1,4,4,3,5,8) \sim K_{4}(1,3,5,5,7,4)
$$

If $e+5=f+3$, so $e+2=f$. After simplification, we obtain $Q_{18}(G) \neq$ $Q_{18}(H)$, a contradiction.

Case 2.1.4 $e^{\prime}=3$. We obtain the following after simplification.

$$
\begin{aligned}
& Q_{19}(G)=-s^{5}-s^{e}-s^{f}-s^{e+1}-s^{f+1}+s^{11}+s^{e+4}+s^{e+5}+s^{f+4} \\
& Q_{19}(H)=-s^{3}-s^{6}-s^{d^{\prime}}-s^{f^{\prime}}-s^{f^{\prime}+1}+s^{7}+s^{8}+s^{f^{\prime}+3}+s^{f^{\prime}+6}
\end{aligned}
$$

Comparing the h.r.p in $Q_{19}(G)$ and the h.r.p in $Q_{19}(H)$, we obtain $f^{\prime}+6=$ 11 or $e+5=f^{\prime}+6$ or $f+4=f^{\prime}+6$.

Case 2.1.4.1 $f^{\prime}+6=11$, so $f^{\prime}=5$. From Equation (1), $e=2$. After simplification, we get $Q_{19}(G) \neq Q_{19}(H)$, a contradiction.

Case 2.1.4.2 $e+5=f^{\prime}+6$, so $e=f^{\prime}+1$. Similarly, we get $Q_{19}(G) \neq$ $Q_{19}(H)$, a contradiction.

Case 2.1.4.3 $f+4=f^{\prime}+6$, so $f=f^{\prime}+2$. We obtain the following after
simplification.

$$
\begin{aligned}
& Q_{20}(G)=-s^{5}-s^{e}-s^{f}-s^{e+1}-s^{f+1}+s^{11}+s^{e+4}+s^{e+5}, \\
& Q_{20}(H)=-s^{3}-s^{6}-s^{d^{\prime}}-s^{f^{\prime}}-s^{f^{\prime}+1}+s^{7}+s^{8}+s^{f+1} .
\end{aligned}
$$

Comparing the h.r.p in $Q_{20}(G)$ and the h.r.p in $Q_{20}(H)$, we obtain $f+1=11$ or $e+5=8$ or $e+5=f+1$.

If $f+1=11$, so $f=10$. Then $d^{\prime}=3$ and by Equation (1), we get $e=5$. It can be checked that $Q_{20}(G) \neq Q_{20}(H)$.

If $e+5=8$, so $e=3$. By Equation (1), we get $f^{\prime}=6$ and then $f=8$. It can be checked that $Q_{20}(G) \neq Q_{20}(H)$.

If $e+5=f+1$, so $e+4=f$, then we get $Q_{20}(G) \neq Q_{20}(H)$.
Case 2.1.5 $f^{\prime}=3$. We obtain the following after simplification.
$Q_{21}(G)=-s^{5}-s^{e}-s^{f}-s^{e+1}-s^{f+1}+s^{11}+s^{e+4}+s^{e+5}+s^{f+4}$,
$Q_{21}(H)=-s^{3}-s^{d^{\prime}}-s^{e^{\prime}}-s^{e^{\prime}+1}+s^{9}+s^{e^{\prime}+4}+s^{e^{\prime}+5}$.
If $e^{\prime}+5=11$, then $e^{\prime}=6$. From Equation (1), $e=3$. Similar to the cases above, we obtain $Q_{21}(G) \neq Q_{21}(H)$, a contradiction.

If $e^{\prime}+5=e+5$, then $e^{\prime}=e$. Similar to the cases above, we obtain $Q_{21}(G) \neq Q_{21}(H)$, a contradiction.

If $e^{\prime}+5=f+4$, then $e^{\prime}+1=f$. Similar to the cases above, we obtain $Q_{21}(G) \neq Q_{21}(H)$, a contradiction.

Case 2.2 $f+5=e^{\prime}+5$. We obtain the following after simplification.

$$
\begin{aligned}
& Q_{22}(G)=-s^{4}-s^{5}-s^{e}-s^{e+1}+s^{11}+s^{e+4}+s^{e+5} \\
& Q_{22}(H)=-s^{6}-s^{d^{\prime}}-s^{f^{\prime}}-s^{f^{\prime}+1}+s^{d^{\prime}+8}+s^{f^{\prime}+3}+s^{f^{\prime}+6}
\end{aligned}
$$

Comparing the l.r.p in $Q_{22}(G)$ and the l.r.p in $Q_{22}(H)$, we obtain $d^{\prime}=4$ or $f^{\prime}=4$ or $f^{\prime}=3$.

If $d^{\prime}=4$, by Equation (1), $e=f^{\prime}$. Similar to the cases above, we obtain
$Q_{22}(G) \neq Q_{22}(H)$, a contradiction.
If $f^{\prime}=4$, by Equation (1), $e=d^{\prime}+1$. Similar to the cases above, we obtain $Q_{22}(G) \neq Q_{22}(H)$, a contradiction.

If $f^{\prime}=3$, by Equation (1), $e=d^{\prime}$. Similar to the cases above, we obtain $Q_{22}(G) \neq Q_{22}(H)$, a contradiction.

Case 2.3 $f+5=f^{\prime}+6$, so $f=f^{\prime}+1$. We obtain the following after simplification.
$Q_{23}(G)=-s^{4}-s^{5}-s^{e}-s^{e+1}-s^{f+1}+s^{11}+s^{e+4}+s^{e+5}+s^{f+4}$,
$Q_{23}(H)=-s^{6}-s^{d^{\prime}}-s^{e^{\prime}}-s^{f^{\prime}}-s^{e^{\prime}+1}+s^{d^{\prime}+8}+s^{e^{\prime}+4}+s^{e^{\prime}+5}+s^{f^{\prime}+3}$.
Comparing the l.r.p in $Q_{23}(G)$ and the l.r.p in $Q_{23}(H)$, we obtain $d^{\prime}=4$ or $f^{\prime}=4$ or $e^{\prime}=4$ or $e^{\prime}=3$.

Case 2.3.1 $d^{\prime}=4$. From Equation (1), $e=e^{\prime}$. We can see that $Q_{23}(G) \neq$ $Q_{23}(H)$, a contradiction.

Case 2.3.2 $e^{\prime}=4$. From Equation (1), $e=d^{\prime}$. We can see that $G \cong H$.
Case 2.3.3 $f^{\prime}=4$. So $f=5$. We obtain the following after simplification.

$$
\begin{aligned}
& Q_{24}(G)=-s^{5}-s^{e}-s^{e+1}+s^{9}+s^{11}+s^{e+4}+s^{e+5}, \\
& Q_{24}(H)=-s^{d^{\prime}}-s^{e^{\prime}}-s^{e^{\prime}+1}+s^{7}+s^{d^{\prime}+8}+s^{e^{\prime}+4}+s^{e^{\prime}+5} .
\end{aligned}
$$

Comparing the l.r.p in $Q_{24}(G)$ and the l.r.p in $Q_{24}(H)$, we obtain $d^{\prime}=5$ or $e^{\prime}=5$ or $e^{\prime}=4$.

Case 2.3.3.1 $d^{\prime}=5$. From Equation (1), $e=e^{\prime}+1$. After simplifying $Q_{24}(G)$ and $Q_{24}(H)$, we have $e=8$ and $e^{\prime}=7$. Thus, $G \cong K_{4}(1,4,4,3,8,5)$ and $H \cong K_{4}(1,3,5,5,7,4)$ and hence, $K_{4}(1,4,4,3,8,5) \sim K_{4}(1,3,5,5,7,4)$. But this is a contradiction since $e \leq f$.

Case 2.3.3.2 $e^{\prime}=5$. From Equation (1), $e=d^{\prime}+1$. We can see that $Q_{24}(G) \neq Q_{24}(H)$, a contradiction.

Case 2.3.3.3 $e^{\prime}=4$. From Equation (1), $e=d^{\prime}$. After simplifying $Q_{24}(G)$ and $Q_{24}(H)$, we have $e=d^{\prime}=3$. Thus, $G \cong K_{4}(1,4,4,3,3,5)$ and $H \cong$
$K_{4}(1,3,5,3,4,4)$ and hence, $G \cong H$.
$\underline{\text { Case 2.3.4 }} e^{\prime}=3$. We can see that $Q_{23}(G) \neq Q_{23}(H)$, a contradiction.
Case B $e=3$. We obtain the following after simplification.

$$
\begin{aligned}
& Q_{25}(G)=-2 s^{4}-s^{5}-s^{d}-s^{f}-s^{f+1}+s^{7}+s^{8}+s^{d+8}+s^{f+4}+s^{f+5}, \\
& Q_{25}(H)=-s^{6}-s^{d^{\prime}}-s^{e^{\prime}}-s^{f^{\prime}}-s^{e^{\prime}+1}-s^{f^{\prime}+1}+s^{d^{\prime}+8}+s^{e^{\prime}+4}+s^{e^{\prime}+5}+
\end{aligned}
$$

Consider the term $-2 s^{4}$ in $Q_{25}(G)$. Since $-2 s^{4}$ in $Q_{25}(G)$ cannot be cancelled by any positive term in $Q_{25}(G)$, then it must be equal to two terms in $Q_{25}(H)$. Since $e^{\prime}+f^{\prime} \geq 8$, we have $d^{\prime}=e^{\prime}=4$ or $d^{\prime}=f^{\prime}=4$ or $e^{\prime}=f^{\prime}=4$ or $d^{\prime}=e^{\prime}+1=4$ or $d^{\prime}=f^{\prime}+1=4$.

Case $1 d^{\prime}=e^{\prime}=4$. We obtain the following after simplification.

$$
\begin{aligned}
& Q_{26}(G)=-s^{d}-s^{f}-s^{f+1}+s^{7}+s^{d+8}+s^{f+4}+s^{f+5} \\
& Q_{26}(H)=-s^{6}-s^{f^{\prime}}-s^{f^{\prime}+1}+s^{9}+s^{12}+s^{f^{\prime}+3}+s^{f^{\prime}+6} .
\end{aligned}
$$

Comparing the h.r.p in $Q_{26}(G)$ and the h.r.p in $Q_{26}(H)$, we obtain $d+8=$ $f^{\prime}+6$ or $d+8=12$ or $f+5=f^{\prime}+6$ or $f+5=12$.

Case 1.1 $d+8=f^{\prime}+6$. So $d+2=f^{\prime}$. From Equation (1), $f=7$. After simplifying, we obtain $d=6$ and $f^{\prime}=8$. Therefore, $G \cong K_{4}(1,4,4,6,3,7)$ and $H \cong K_{4}(1,3,5,4,4,8)$ and hence,

$$
K_{4}(1,4,4,6,3,7) \sim K_{4}(1,3,5,4,4,8)
$$

Case 1.2 $d+8=12$. So $d=4$. From Equation (1), $f=f^{\prime}+1$. After simplifying, we obtain that $f=5$ and $f^{\prime}=4$. Therefore $G \cong K_{4}(1,4,4,4,3,5)$ and $H \cong K_{4}(1,3,5,4,4,4)$, and hence $G \cong H$.

$$
\begin{aligned}
& Q_{27}(G)=-s^{d}-s^{f}-s^{f+1}+s^{8}+s^{d+8}+s^{f+4}+s^{f+5}, \\
& Q_{27}(H)=-s^{6}-s^{e^{\prime}}-s^{e^{\prime}+1}+s^{10}+s^{12}+s^{e^{\prime}+4}+s^{e^{\prime}+5} . \\
& K_{4}(1,4,4,6,3,8) \sim K_{4}(1,3,5,4,9,4) .
\end{aligned}
$$

N.S.A. Karim, R. Hasni and G.C.Lau

$$
\begin{aligned}
& Q_{28}(G)=-s^{d}-s^{f}-s^{f+1}+s^{d+8}+s^{f+4}+s^{f+5}, \\
& Q_{28}(H)=-s^{5}-s^{6}-s^{d^{\prime}}+s^{9}+s^{10}+s^{d^{\prime}+8} . \\
& Q_{29}(G)=-s^{5}-s^{d}-s^{f}-s^{f+1}+s^{d+8}+s^{f+4}+s^{f+5}, \\
& Q_{29}(H)=-s^{3}-s^{6}-s^{f^{\prime}}-s^{f^{\prime}+1}+s^{12}+s^{f^{\prime}+3}+s^{f^{\prime}+6} . \\
& Q_{30}(G)=-s^{5}-s^{d}-s^{f}-s^{f+1}+s^{7}+s^{8}+s^{d+8}+s^{f+4}+s^{f+5}, \\
& Q_{30}(H)=-s^{3}-s^{e^{\prime}}-s^{e^{\prime}+1}+s^{9}+s^{12}+s^{e^{\prime}+4}+s^{e^{\prime}+5} . \\
& Q_{31}(G)=-s^{2}-s^{4}-s^{5}-s^{d}-s^{f}-s^{f+1}+s^{6}+s^{7}+s^{d+8}+s^{f+4}+s^{f+5}, \\
& Q_{31}(H)=-s^{6}-s^{d^{\prime}}-s^{e^{\prime}}-s^{f^{\prime}}-s^{e^{\prime}+1}-s^{f^{\prime}+1}+s^{d^{\prime}+8}+s^{e^{\prime}+4}+s^{e^{\prime}+5}+ \\
& s^{f^{\prime}+3}+s^{f^{\prime}+6} . \\
& Q_{32}(G)=-s^{4}-s^{5}-s^{d}-s^{f}-s^{f+1}+s^{6}+s^{7}+s^{d+8}+s^{f+4}+s^{f+5}, \\
& Q_{32}(H)=-s^{6}-s^{e^{\prime}}-s^{f^{\prime}}-s^{e^{\prime}+1}-s^{f^{\prime}+1}+s^{10}+s^{e^{\prime}+4}+s^{e^{\prime}+5}+s^{f^{\prime}+3}+s^{f^{\prime}+6 .} . \\
& Q_{33}(G)=-s^{d}-s^{f}-s^{f+1}+s^{6}+s^{7}+s^{d+8}+s^{f+4}+s^{f+5}, \\
& Q_{33}(H)=-s^{6}-s^{f^{\prime}}-s^{f^{\prime}+1}+s^{8}+s^{9}+s^{10}+s^{f^{\prime}+3}+s^{f^{\prime}+6 .} .
\end{aligned}
$$

$$
K_{4}(1,4,4,6,2,6) \sim K_{4}(1,3,5,2,4,8)
$$

$$
Q_{34}(G)=-s^{d}-s^{f}-s^{f+1}+s^{6}+s^{d+8}+s^{f+4}+s^{f+5},
$$

$$
Q_{34}(H)=-s^{6}-s^{e^{\prime}}-s^{e^{\prime}+1}+2 s^{10}+s^{e^{\prime}+4}+s^{e^{\prime}+5} .
$$

$$
Q_{35}(G)=-s^{5}-s^{d}-s^{f}-s^{f+1}+s^{7}+s^{d+8}+s^{f+4}+s^{f+5}
$$

$$
Q_{35}(H)=-s^{3}-s^{6}-s^{e^{\prime}}-s^{e^{\prime}+1}+s^{9}+s^{10}+s^{e^{\prime}+4}+s^{e^{\prime}+5} .
$$

$$
Q_{36}(G)=-s^{4}-s^{5}-s^{d}-s^{f}-s^{f+1}+s^{d+8}+s^{f+4}+s^{f+5},
$$

$$
Q_{36}(H)=-s^{3}-s^{6}-s^{d^{\prime}}-s^{f^{\prime}}-s^{f^{\prime}+1}+s^{d^{\prime}+8}+s^{f^{\prime}+3}+s^{f^{\prime}+6} .
$$

$$
Q_{37}(G)=-s^{4}-s^{5}-s^{f}-s^{f+1}+s^{11}+s^{f+4}+s^{f+5}
$$

$$
\begin{aligned}
& Q_{37}(H)=-s^{6}-s^{d^{\prime}}-s^{f^{\prime}}-s^{f^{\prime}+1}+s^{d^{\prime}+8}+s^{f^{\prime}+3}+s^{f^{\prime}+6} . \\
& Q_{38}(G)=-s^{4}-s^{5}-s^{d}-s^{f}-s^{f+1}+s^{6}+s^{7}+s^{d+8}+s^{f+4}+s^{f+5}, \\
& Q_{38}(H)=-s^{3}-s^{6}-s^{d^{\prime}}-s^{e^{\prime}}-s^{e^{\prime}+1}+s^{5}+s^{8}+s^{d^{\prime}+8}+s^{e^{\prime}+4}+s^{e^{\prime}+5} . \\
& Q_{39}(G)=-s^{4}-s^{5}-s^{f}-s^{f+1}+s^{6}+s^{7}+s^{11}+s^{f+4}+s^{f+5}, \\
& Q_{39}(H)=-s^{6}-s^{d^{\prime}}-s^{e^{\prime}}-s^{e^{\prime}+1}+s^{5}+s^{8}+s^{d^{\prime}+8}+s^{e^{\prime}+4}+s^{e^{\prime}+5} . \\
& K_{4}(1,4,4,3,5,8) \sim K_{4}(1,3,5,5,7,4), \\
& K_{4}(1,4,4,6,3,7) \sim K_{4}(1,3,5,4,4,8), \\
& K_{4}(1,4,4,6,3,8) \sim K_{4}(1,3,5,4,9,4), \\
& K_{4}(1,4,4,6,2,6) \sim K_{4}(1,3,5,2,4,8) .
\end{aligned}
$$

This completes the proof of Lemma 3.1.
Lemma 3.2. If G is of type of $K_{4}(1,4,4, d, e, f)$, and H is of type of $K_{4}\left(1,2,6, d^{\prime}, e^{\prime}, f^{\prime}\right)$, then G is not chromatically equivalent to H except that

$$
K_{4}(1,4,4,2,3,7) \sim K_{4}(1,2,6,4,4,4)
$$

Proof. Let G and H be two graphs such that $G \cong K_{4}(1,4,4, d, e, f)$ and $H \cong K_{4}\left(1,2,6, d^{\prime}, e^{\prime}, f^{\prime}\right)$. Then

$$
\begin{aligned}
Q(G)= & -(s+1)\left(s+s^{4}+s^{4}+s^{d}+s^{e}+s^{f}\right)+s^{d+1}+s^{f+4}+ \\
& s^{e+4}+s^{e+5}+s^{d+8}+s^{f+5}+s^{d+e+f} \\
Q(H)= & -(s+1)\left(s+s^{2}+s^{6}+s^{d^{\prime}}+s^{e^{\prime}}+s^{f^{\prime}}\right)+s^{d^{\prime}+1}+s^{f^{\prime}+2}+ \\
& s^{e^{\prime}+6}+s^{e^{\prime}+3}+s^{d^{\prime}+8}+s^{f^{\prime}+7}+s^{d^{\prime}+e^{\prime}+f^{\prime}}
\end{aligned}
$$

$Q(G)=Q(H)$ and from Equation (1) of Lemma 3.1 yield

$$
\begin{aligned}
Q_{1}(G)= & -2 s^{4}-2 s^{5}-s^{d}-s^{e}-s^{f}-s^{e+1}-s^{f+1}+ \\
& s^{d+8}+s^{e+4}+s^{e+5}+s^{f+4}+s^{f+5} . \\
Q_{1}(H)= & -s^{2}-s^{3}-s^{6}-s^{7}-s^{d^{\prime}}-s^{e^{\prime}}-s^{f^{\prime}}-s^{e^{\prime}+1}-s^{f^{\prime}+1}+ \\
& s^{d^{\prime}+8}+s^{e^{\prime}+3}+s^{e^{\prime}+6}+s^{f^{\prime}+2}+s^{f^{\prime}+7} .
\end{aligned}
$$

By symmetry of $K_{4}(1,4,4, d, e, f)$, we can assume that $e \leq f$. From Lemma 2.1 (1),

$$
\begin{equation*}
d+e+f=d^{\prime}+e^{\prime}+f^{\prime} \tag{2}
\end{equation*}
$$

Note that $\min \{d, e\}=2$. So, there are two cases to be considered.

Case Ad $d=2$. From $d+e \geq 5$ and $e \leq f$, we have $3 \leq e \leq f$. We obtain the following after simplification.

$$
\begin{aligned}
& Q_{2}(G)=-2 s^{4}-2 s^{5}-s^{e}-s^{e+1}-s^{f}-s^{f+1}+s^{10}+s^{e+4}+s^{e+5}+s^{f+4}+s^{f+5} . \\
& \begin{array}{c}
Q_{2}(H)
\end{array}=-s^{3}-s^{6}-s^{7}-s^{d^{\prime}}-s^{e^{\prime}}-s^{e^{\prime}+1}-s^{f^{\prime}}-s^{f^{\prime}+1}+s^{d^{\prime}+8}+s^{e^{\prime}+3}+ \\
& s^{e^{\prime}+6}+s^{f^{\prime}+2}+s^{f^{\prime}+7} .
\end{aligned}
$$

The h.r.p in $Q_{2}(G)$ is 10 or $f+5$.//
Case $110 \geq f+5$. Consider the h.r.p in $Q_{2}(H)$, so we have $e^{\prime}+6=10$ or $f^{\prime}+7=10$ or $d^{\prime}+8=10$.

Case 1.1 $e^{\prime}+6=10$. So $e^{\prime}=4$. We obtain the following after simplification.

$$
\begin{aligned}
& Q_{3}(G)=-s^{4}-s^{5}-s^{e}-s^{e+1}-s^{f}-s^{f+1}+s^{e+4}+s^{e+5}+s^{f+4}+s^{f+5} . \\
& Q_{3}(H)=-s^{3}-s^{6}-s^{d^{\prime}}-s^{f^{\prime}}-s^{f^{\prime}+1}+s^{d^{\prime}+8}+s^{f^{\prime}+2}+s^{f^{\prime}+7} .
\end{aligned}
$$

Consider the h.r.p in $Q_{3}(G)$ and the h.r.p in $Q_{3}(H)$, we have $d^{\prime}+8=f+5$
or $f^{\prime}+7=f+5$.

Case 1.1. $1 d^{\prime}+8=f+5$. So $d^{\prime}+3=f$. By Equation (2), $e+1=f^{\prime}$. Cancelling the equal terms in $Q_{3}(G)$ and $Q_{3}(H)$ resulting the following.

$$
\begin{aligned}
& Q_{4}(G)=-s^{4}-s^{5}-s^{e}-s^{f}-s^{f+1}+s^{e+4}+s^{e+5}+s^{f+4} . \\
& Q_{4}(H)=-s^{3}-s^{6}-s^{e+2}-s^{f-3}+s^{e+3}+s^{e+8} .
\end{aligned}
$$

After simplification, we obtain $e=3, f=7, d^{\prime}=4$ and $f^{\prime}=4$. Therefore, $G \cong K_{4}(1,4,4,2,3,7)$ and $H \cong K_{4}(1,2,6,4,4,4)$. Hence,

$$
K_{4}(1,4,4,2,3,7) \sim K_{4}(1,2,6,4,4,4)
$$

Case 1.1.2 $f^{\prime}+7=f+5$. So $f^{\prime}+2=f$. By Equation (2), $e=d^{\prime}$. Cancelling the equal terms in $Q_{3}(G)$ and $Q_{3}(H)$ resulting the following.

$$
\begin{aligned}
& Q_{5}(G)=-s^{4}-s^{5}-s^{e+1}-s^{f}-s^{f+1}+s^{e+4}+s^{e+5}+s^{f+4} . \\
& Q_{5}(H)=-s^{3}-s^{6}-s^{f-2}-s^{f-1}+s^{f}+s^{e+8} .
\end{aligned}
$$

Consider the h.r.p in $Q_{5}(G)$ and the h.r.p in $Q_{5}(H)$, we have $f+4=e+8$ or $e+5=f$. If $f=e+4$, we obtain $e=2$, a contradiction. If $f=e+5$, we obtain that $Q_{5}(G) \neq Q_{5}(H)$, also a contradiction.

Case 1.2 $f^{\prime}+7=10$. So $f^{\prime}=3$. We obtain the following after simplification.

$$
\begin{aligned}
& Q_{6}(G)=-s^{4}-2 s^{5}-s^{e}-s^{e+1}-s^{f}-s^{f+1}+s^{e+4}+s^{e+5}+s^{f+4}+s^{f+5} . \\
& Q_{6}(H)=-2 s^{3}-s^{6}-s^{7}-s^{d^{\prime}}-s^{e^{\prime}}-s^{e^{\prime}+1}+s^{5}+s^{d^{\prime}+8}+s^{e^{\prime}+3}+s^{e^{\prime}+6} .
\end{aligned}
$$

Consider the h.r.p in $Q_{6}(G)$ and the h.r.p in $Q_{6}(H)$, we have $f+5=e^{\prime}+6$
or $f+5=d^{\prime}+8$.

Case 1.2.1 $f+5=e^{\prime}+6$. So $f=e^{\prime}+1$. By Equation (2), $e=d^{\prime}$. We obtain the following after simplification.//

$$
\begin{aligned}
& Q_{7}(G)=-s^{4}-2 s^{5}-s^{e+1}-s^{f+1}+s^{e+4}+s^{e+5}+s^{f+4} \\
& Q_{7}(H)=-2 s^{3}-s^{6}-s^{7}-s^{f-1}+s^{5}+s^{e+8}+s^{f+2}
\end{aligned}
$$

The term $-2 s^{3}$ is in $Q_{7}(H)$ but not in $Q_{7}(G)$, a contradiction.

Case 1.2.2 $f+5=d^{\prime}+8$. So $f=d^{\prime}+3$. By Equation (2), $e+2=e^{\prime}$. Similar to Case 1.2.1, we obtain that $Q_{6}(G) \neq Q_{6}(H)$, a contradiction.

Case 1.3 $d^{\prime}+8=10$. So $d^{\prime}=2$.

$$
\begin{aligned}
& Q_{8}(G)=-2 s^{4}-2 s^{5}-s^{e}-s^{e+1}-s^{f}-s^{f+1}+s^{e+4}+s^{e+5}+s^{f+4}+s^{f+5} . \\
& Q_{8}(H)=-s^{2}-s^{3}-s^{6}-s^{7}-s^{e^{\prime}}-s^{e^{\prime}+1}-s^{f^{\prime}}-s^{f^{\prime}+1}+s^{e^{\prime}+3}+s^{e^{\prime}+6}+ \\
& s^{f^{\prime}+2}+s^{f^{\prime}+7} .
\end{aligned}
$$

As $e \geq 3$, the highest terms in $Q_{8}(G)$ and $Q_{8}(H)$ are not equal, a contradiction.

Case $210 \leq f+5$. Consider the h.r.p in $Q_{2}(H)$, so we have $e^{\prime}+6=f+5$ or $f^{\prime}+7=f+5$ or $d^{\prime}+8=f+5$.

Case 2.1 $e^{\prime}+6=f+5$. So $e^{\prime}+1=f$. Cancelling the equal terms in $Q_{2}(G)$ and $Q_{2}(H)$ yields the following.

$$
\begin{aligned}
& Q_{9}(G)=-2 s^{4}-2 s^{5}-s^{e}-s^{e+1}-s^{f+1}+s^{10}+s^{e+4}+s^{e+5}+s^{f+4} . \\
& Q_{9}(H)=-s^{3}-s^{6}-s^{7}-s^{d^{\prime}}-s^{e^{\prime}}-s^{f^{\prime}}-s^{f^{\prime}+1}+s^{d^{\prime}+8}+s^{e^{\prime}+3}+s^{f^{\prime}+2}+s^{f^{\prime}+7} .
\end{aligned}
$$

Consider the term $-2 s^{4}$ in $Q_{9}(G)$. Since $Q_{9}(G)=Q_{9}(H)$, there are two terms in $Q_{9}(H)$ equal to $-2 s^{4}$. So we have $d^{\prime}=e^{\prime}=4$ or $d^{\prime}=f^{\prime}=4$ or $e^{\prime}=f^{\prime}=4$ or $d^{\prime}=f^{\prime}+1=4$.

Case 2.1.1 $d^{\prime}=e^{\prime}=4$. So $f=5$. By Equation (2), $e=f^{\prime}+1$. We obtain the following after simplification.

$$
\begin{aligned}
& Q_{10}(G)=-2 s^{5}-s^{e+1}+s^{9}+s^{10}+s^{e+4}+s^{e+5}, Q_{10}(H)=-s^{3}-s^{e-1}+ \\
& +s^{e+1}+s^{e+6}
\end{aligned}
$$

Since $-s^{3}$ is in $Q_{10}(H)$ but not in $Q_{10}(G)$, this is a contradiction.

Case 2.1.2 $d^{\prime}=f^{\prime}=4$. So $e=5$. By Equation (2), $e^{\prime}+1=f$. Similar to Case 2.1.1, we obtain a contradiction.

Case 2.1.3 $e^{\prime}=f^{\prime}=4$. So $f=5$. By Equation (2), $e=d^{\prime}+1$. Similar to Case 2.1.1, we obtain a contradiction.

Case 2.1.4 $d^{\prime}=f^{\prime}+1=4$. So $f^{\prime}=3$. By Equation (2), $e=4$. Similar to Case 2.1.1, we obtain a contradiction.

Case 2.2 $f^{\prime}+7=f+5$. So $f^{\prime}+2=f$. Cancelling the equal terms in $Q_{2}(G)$ and $Q_{2}(H)$ yields the following.

$$
\begin{aligned}
& Q_{11}(G)=-2 s^{4}-2 s^{5}-s^{e}-s^{e+1}-s^{f}-s^{f+1}+s^{10}+s^{e+4}+s^{e+5}+s^{f+4} . \\
& \begin{array}{c}
Q_{11}(H) \\
s^{e^{\prime}+6}+s^{f}+2
\end{array}
\end{aligned}
$$

Consider the term $-2 s^{4}$ in $Q_{11}(G)$. For the same reason as in Case 2.1, we have $d^{\prime}=e^{\prime}=4$ or $d^{\prime}=f^{\prime}=4$ or $e^{\prime}=f^{\prime}=4$ or $d^{\prime}=e^{\prime}+1=4$ or
$d^{\prime}=f^{\prime}+1=4$.

Case 2.2.1 $d^{\prime}=e^{\prime}=4$. So $f=f^{\prime}+2$. By Equation (2), $e=4$. We obtain the following after simplification.

$$
\begin{aligned}
& Q_{12}(G)=-s^{4}-2 s^{5}-s^{f}-s^{f+1}+s^{8}+s^{9}+s^{f+4}, Q_{12}(H)=-s^{3}-s^{6}- \\
& s^{f-2}-s^{f-1}+s^{12}+s^{f} .
\end{aligned}
$$

The term $-2 s^{5}$ is in $Q_{12}(G)$ but not in $Q_{12}(H)$, a contradiction.

Case 2.2.2 $d^{\prime}=f^{\prime}=4$. So $f=f^{\prime}+2$. By Equation (2), $e=e^{\prime}$. Similar to Case 2.2.1, we obtain a contradiction.

Case 2.2.3 $e^{\prime}=f^{\prime}=4$. So $f=f^{\prime}+2$. By Equation (2), $e=d^{\prime}$. Similar to Case 2.2.1, we obtain a contradiction.

Case 2.2.4 $d^{\prime}=e^{\prime}+1=4$. So $e^{\prime}=3$. By Equation (2), $e=3$. Similar to Case 2.2.1, we obtain a contradiction.

Case 2.2.5 $d^{\prime}=f^{\prime}+1=4$. So $f^{\prime}=3$ and $f=5$. By Equation (2), $e=e^{\prime}$. Similar to Case 2.2.1, we obtain a contradiction.

Case 2.3 $d^{\prime}+8=f+5$. So $d^{\prime}+3=f$. Cancelling the equal terms in $Q_{2}(G)$ and $Q_{2}(H)$ yields the following.

$$
\begin{aligned}
& Q_{13}(G)=-2 s^{4}-2 s^{5}-s^{e}-s^{e+1}-s^{f}-s^{f+1}+s^{10}+s^{e+4}+s^{e+5}+s^{f+4} . \\
& Q_{13}(H)=-s^{3}-s^{6}-s^{7}-s^{d^{\prime}}-s^{e^{\prime}}-s^{e^{\prime}+1}-s^{f^{\prime}}-s^{f^{\prime}+1}+s^{e^{\prime}+3}+s^{e^{\prime}+6}+ \\
& s^{f^{\prime}+2}+s^{f^{\prime}+7} .
\end{aligned}
$$

Consider the term $-2 s^{4}$ in $Q_{13}(G)$. For the same reason as in Case 2.1, we have $d^{\prime}=e^{\prime}=4$ or $d^{\prime}=f^{\prime}=4$ or $e^{\prime}=f^{\prime}=4$ or $d^{\prime}=e^{\prime}+1=4$ or
$d^{\prime}=f^{\prime}+1=4$.

Case 2.3.1 $d^{\prime}=e^{\prime}=4$. So $f=7$. By Equation (2), $e+1=f^{\prime}$. We obtain the following after simplification.

$$
\begin{aligned}
& Q_{14}(G)=-s^{5}-s^{8}-s^{e}-s^{e+1}+s^{11}+s^{e+4}+s^{e+5} \\
& Q_{14}(H)=-s^{3}-s^{6}-s^{e+1}-s^{e+2}+s^{7}+s^{e+3}+s^{e+8}
\end{aligned}
$$

Thus $e=3$ and $f^{\prime}=4$. So $G \cong K_{4}(1,4,4,2,3,7)$ and $H \cong K_{4}(1,2,6,4,4,4)$. Hence

$$
K_{4}(1,4,4,2,3,7) \sim K_{4}(1,2,6,4,4,4) .
$$

Case 2.3.2 $d^{\prime}=f^{\prime}=4$. So $f=7$. By Equation (2), $e+1=e^{\prime}$. After simplification, we have $e=3$ and $e^{\prime}=4$. We obtain the same solution as in Case 2.3.1.

Case 2.3.3 $e^{\prime}=f^{\prime}=4$. So $e=3$. By Equation (2), $f=d^{\prime}+3$. After simplification, we have $f=7$ and $d^{\prime}=4$. We obtain the same solution as in Case 2.3.1.

Case 2.3.4 $d^{\prime}=e^{\prime}+1=4$. So $e^{\prime}=3$ and $f=7$. By Equation (2), $e+2=f^{\prime}$. After simplification, we have $Q_{14}(G) \neq Q_{14}(H)$, a contradiction.

Case 2.3.5 $d^{\prime}=f^{\prime}+1=4$. So $f^{\prime}=3$ and $f=7$. By Equation (2), $e+2=e^{\prime}$. After simplification, we have $Q_{14}(G) \neq Q_{14}(H)$, a contradiction.

Case Be=2. So $d \geq 3$ and $f \geq 6$. We obtain the following after simplification.

$$
Q_{15}(G)=-2 s^{4}-2 s^{5}-s^{d}-s^{f}-s^{f+1}+s^{6}+s^{7}+s^{d+8}+s^{f+4}+s^{f+5} .
$$

$Q_{15}(H)=-s^{6}-s^{7}-s^{d^{\prime}}-s^{e^{\prime}}-s^{e^{\prime}+1}-s^{f^{\prime}}-s^{f^{\prime}+1}+s^{d^{\prime}+8}+s^{e^{\prime}+3}+s^{e^{\prime}+6}+$
$s^{f^{\prime}+2}+s^{f^{\prime}+7}$.

Consider the l.r.p in $Q_{15}(G)$ and the l.r.p in $Q_{15}(H)$, we have $d^{\prime}=e^{\prime}=4$ or $d^{\prime}=f^{\prime}=4$ or $e^{\prime}=f^{\prime}=4$ or $d^{\prime}=e^{\prime}+1=4$ or $d^{\prime}=f^{\prime}+1=4$.

Case $1 d^{\prime}=e^{\prime}=4$. We obtain the following after simplification.

$$
\begin{aligned}
& Q_{16}(G)=-s^{5}-s^{d}-s^{f}-s^{f+1}+s^{6}+s^{d+8}+s^{f+4}+s^{f+5} \\
& Q_{16}(H)=-s^{6}-s^{7}-s^{f^{\prime}}-s^{f^{\prime}+1}+s^{10}+s^{12}+s^{f^{\prime}+2}+s^{f^{\prime}+7}
\end{aligned}
$$

The h.r.p in $Q_{16}(H)$ is 12 or $f^{\prime}+7$.

Case 1.1 $12 \geq f^{\prime}+7$. The h.r.p in $Q_{16}(G)$ is $f+5$ or $d+8$. So we have $f+5=12$ or $d+8=12$.

Case 1.1.1 $f+5=12$. So $f=7$. We obtain $Q_{16}(G) \neq Q_{16}(H)$, a contradiction.

Case 1.1.2 $d+8=12$. So $d=4$. We obtain $G \cong H$.

Case 1.2 $12<f^{\prime}+7$. The h.r.p in $Q_{16}(G)$ is $f+5$ or $d+8$. So we have $f+5=f^{\prime}+7$ or $d+8=f^{\prime}+7$.

Case 1.2.1 $f+5=f^{\prime}+7$. So $f=f^{\prime}+2$. By Equation (2), $d=4$. Cancelling the equal terms in $Q_{16}(G)$ and $Q_{16}(H)$ gives the following.

$$
\begin{aligned}
& Q_{17}(G)=-s^{5}-s^{4}-s^{f}-s^{f+1}+s^{6}+s^{f+4} \\
& Q_{17}(H)=-s^{6}-s^{7}-s^{f-2}-s^{f-1}+s^{10}+s^{f}
\end{aligned}
$$

We obtain $f=6$ and $f^{\prime}=4$. Therefore, $G \cong K_{4}(1,4,4,4,2,6)$ and $H \cong K_{4}(1,2,6,4,4,4)$. Thus, $G \cong H$.

Case 1.2.2 $d+8=f^{\prime}+7$. So $d+1=f^{\prime}$. By Equation (2), $f=7$. We obtain $Q_{16}(G) \neq Q_{16}(H)$, a contradiction.

Case $2 d^{\prime}=f^{\prime}=4$. So $e^{\prime} \geq 4$. We obtain the following after simplification.

$$
\begin{aligned}
& Q_{18}(G)=-s^{5}-s^{d}-s^{f}-s^{f+1}+s^{7}+s^{d+8}+s^{f+4}+s^{f+5} \\
& Q_{18}(H)=-s^{6}-s^{7}-s^{e^{\prime}}-s^{e^{\prime}+1}+s^{11}+s^{12}+s^{e^{\prime}+3}+s^{e^{\prime}+6} .
\end{aligned}
$$

The h.r.p in $Q_{18}(H)$ is 12 when $e^{\prime}=4,5$ or $e^{\prime}+6$ when $e^{\prime} \geq 6$.

Case 2.1 $12 \geq e^{\prime}+6$. The h.r.p in $Q_{18}(G)$ is $f+5$ or $d+8$.

Case 2.1.1 $f+5=12$ and $e^{\prime}=4$. So $f=7$. By Equation (2), $d=3$. We obtain $Q_{18}(G) \neq Q_{18}(H)$, a contradiction.

Case 2.1.2 $d+8=12$ and $e^{\prime}=4$. So $d=4$. By Equation (2), $f=6$. We obtain $G \cong H$.

Case 2.1.3 $f+5=12$ and $e^{\prime}=5$. So $f=7$. By Equation (2), $d=4$. We obtain $Q_{18}(G) \neq Q_{18}(H)$, a contradiction.

Case 2.1.4 $d+8=12$ and $e^{\prime}=5$. So $d=4$. By Equation (2), $f=7$. We obtain $Q_{18}(G) \neq Q_{18}(H)$, a contradiction.

Case 2.2 $12<e^{\prime}+6$. The h.r.p in $Q_{18}(G)$ is $f+5$ or $d+8$. So we have $f+5=e^{\prime}+6$ or $d+8=e^{\prime}+6$.

Case 2.2.1 $f+5=e^{\prime}+6$. So $f=e^{\prime}+1$. By Equation (2), $d=5$. We obtain $Q_{18}(G) \neq Q_{18}(H)$, a contradiction.

Case 2.2.2 $d+8=e^{\prime}+6$. So $d+2=e^{\prime}$. By Equation (2), $f=8$. We obtain $Q_{18}(G) \neq Q_{18}(H)$, a contradiction.
$\underline{\text { Case } 3} e^{\prime}=f^{\prime}=4$. So $d^{\prime} \geq 3$. We obtain the following after simplification.

$$
\begin{aligned}
& Q_{19}(G)=-s^{d}-s^{f}-s^{f+1}+s^{d+8}+s^{f+4}+s^{f+5} . \\
& Q_{19}(H)=-s^{6}-s^{7}-s^{d^{\prime}}+s^{10}+s^{11}+s^{d^{\prime}+8}
\end{aligned}
$$

Comparing the h.r.p in $Q_{19}(G)$ an the h.r.p in $Q_{19}(H)$, we have $f+5=d^{\prime}+8$ or $d+8=d^{\prime}+8$.

Case 3.1 $f+5=d^{\prime}+8$. So $f=d^{\prime}+3$. By Equation (2), $d=3$. We obtain the following after simplification.

$$
Q_{20}(G)=-s^{3}-s^{f}-s^{f+1}+s^{f+4}, Q_{20}(H)=-s^{6}-s^{7}-s^{f-3}+s^{10}
$$

So $f=6$ and $d^{\prime}=3$. Therefore $G \cong K_{4}(1,4,4,3,2,6)$ and $H \cong K_{4}(1,2,6,3,4,4)$. Hence, $G \cong H$.

Case 3.2 $d+8=d^{\prime}+8$. So $d=d^{\prime}$. By Equation (2), $f=6$. We obtain $G \cong K_{4}(1,4,4, d, 2,6)$ and $H \cong K_{4}(1,2,6, d, 4,4)$. Hence, $G \cong H$.
$\underline{\text { Case } 4} d^{\prime}=e^{\prime}+1=4$. So $e^{\prime}=3$. We obtain the following after simplification.

$$
\begin{aligned}
& Q_{21}(G)=-2 s^{5}-s^{d}-s^{f}-s^{f+1}+s^{7}+s^{d+8}+s^{f+4}+s^{f+5} . \\
& Q_{21}(H)=-s^{3}-s^{6}-s^{7}-s^{f^{\prime}}-s^{f^{\prime}+1}+s^{9}+s^{12}+s^{f^{\prime}+2}+s^{f^{\prime}+7} .
\end{aligned}
$$

Note that there are no positive terms in $Q_{21}(H)$ can be cancelled with the term $-2 s^{5}$ in $Q_{21}(G)$ since $d \geq 3$ and $f \geq 6$. Thus a contradiction.
$\underline{\text { Case } 5} d^{\prime}=f^{\prime}+1=4$. So $f^{\prime}=3$. We obtain the following after simplification.

$$
\begin{aligned}
& Q_{21}(G)=-2 s^{5}-s^{d}-s^{f}-s^{f+1}+s^{6}+s^{7}+s^{d+8}+s^{f+4}+s^{f+5} \\
& Q_{21}(H)=-s^{3}-s^{6}-s^{7}-s^{e^{\prime}}-s^{e^{\prime}+1}+s^{5}+s^{10}+s^{12}+s^{e^{\prime}+3}+s^{e^{\prime}+6}
\end{aligned}
$$

Similar to Case 4 above, we obtain a contradiction.

Thus, from Subcases 1.1.1 of Case A, 2.3.1, 2.3.2 and 2.3.3 of Case B, we obtain the following result

$$
K_{4}(1,4,4,2,3,7) \sim K_{4}(1,2,6,4,4,4)
$$

This completes the proof.
By Lemma 2.5 or using similar method to that of Lemmas 3.1 and 3.2, we can obtain Lemmas 3.3, 3.4 and 3.5.

Lemma 3.3. If G is of type of $K_{4}(1,4,4, d, e, f)$ and H is of type of $K_{4}\left(2,2,5, d^{\prime}, e^{\prime}, f^{\prime}\right)$, then there is no graph satisfying $G \sim H$.

Lemma 3.4. If G is of type of $K_{4}(1,4,4, d, e, f)$ and H is of type of $K_{4}\left(1,2, c^{\prime}, 2, e^{\prime}, 4\right)$, then there is no graph satisfying $G \sim H$.

Lemma 3.5. If G is of type of $K_{4}(1,4,4, d, e, f)$ and H is of type of $K_{4}\left(1,2, c^{\prime}, 4, e^{\prime}, 2\right)$, then there is no graph satisfying $G \sim H$.

Similarly, we can also prove the following lemmas.

Lemma 3.6. If G is of type of $K_{4}(1,4,4, d, e, f)$ and H is of type of $K_{4}\left(1,3, c^{\prime}, 2, e^{\prime}, 3\right)$, then there is no graph satisfying $G \sim H$.

Lemma 3.7. If G is of type of $K_{4}(1,4,4, d, e, f)$ and H is of type of $K_{4}\left(1,2, c^{\prime}, 3, e^{\prime}, 3\right)$, then there is no graph satisfying $G \sim H$.

Now we give the main result of the paper.

Theorem 3.1. K_{4}-homeomorphs $K_{4}(1,4,4, d, e, f)$ with girth 9 is not χ-unique if and only if it is isomorphic to $K_{4}(1,4,4,4,2,6), K_{4}(1,4,4,6,2,6), K_{4}(1,4,4,2,3,7)$, $K_{4}(1,4,4,6,3,7), K_{4}(1,4,4,6,3,8), K_{4}(1,4,4,3,5,8), K_{4}(1,4,4, i, i+1, i+5)$ or $K_{4}(1,4,4, i+2, i, i+4)$, where $i \geq 3$.

Proof. Let G and H be two graphs such that $G \cong K_{4}(1,4,4, d, e, f)$ and $H \sim G$. Since the girth of G is 9 , there is at most one 1 among d, e, f. Moreover by Lemma 2.1 (ii) and (iii), it follows that H is a K_{4}-homoemorph with girth 9. So H must be one of the following 10 types.

Type 1: $K_{4}\left(1,2,6, d^{\prime}, e^{\prime}, f^{\prime}\right)$, where $d^{\prime}+e^{\prime} \geq 7, d^{\prime}+f^{\prime} \geq 3, e^{\prime}+f^{\prime} \geq 8 ;$

Type 2: $K_{4}\left(1,3,5, d^{\prime}, e^{\prime}, f^{\prime}\right)$, where $d^{\prime}+e^{\prime} \geq 6, d^{\prime}+f^{\prime} \geq 4, e^{\prime}+f^{\prime} \geq 8$;

Type 3: $K_{4}\left(1,4,4, d^{\prime}, e^{\prime}, f^{\prime}\right)$, where $d^{\prime}+e^{\prime} \geq 5, d^{\prime}+f^{\prime} \geq 5, e^{\prime}+f^{\prime} \geq 8 ;$

Type 4: $K_{4}\left(2,2,5, d^{\prime}, e^{\prime}, f^{\prime}\right)$, where $d^{\prime}+e^{\prime} \geq 7, d^{\prime}+f^{\prime} \geq 4, e^{\prime}+f^{\prime} \geq 7$;

Type 5: $K_{4}\left(2,3,4, d^{\prime}, e^{\prime}, f^{\prime}\right)$, where $d^{\prime}+e^{\prime} \geq 6, d^{\prime}+f^{\prime} \geq 5, e^{\prime}+f^{\prime} \geq 7$;

Type 6: $K_{4}\left(1,2, c^{\prime}, 2, e^{\prime}, 4\right)$, where $c^{\prime} \geq 6, e^{\prime} \geq 5$;

Type 7: $K_{4}\left(1,2, c^{\prime}, 4, e^{\prime}, 2\right)$, where $c^{\prime}=e^{\prime} \geq 6$;

Type 8: $K_{4}\left(1,2, c^{\prime}, 3, e^{\prime}, 3\right)$, where $c^{\prime} \geq 6, e^{\prime} \geq 5$;

Type 9: $K_{4}\left(1,3, c^{\prime}, 2, e^{\prime}, 3\right)$, where $c^{\prime}=e^{\prime} \geq 5$;

Type 10: $K_{4}\left(2,2, c^{\prime}, 2, e^{\prime}, 3\right)$, where $c^{\prime}=e^{\prime} \geq 5$.

From Lemmas $2.2-2.5,3.1-3.7$, we obtain the result as desired. This completes the proof of Theorem 3.1.

Acknowledgement. The authors sincerely thank the referee for the valuable and constructive comments for the paper.

References

Aklan, N. (2012). Chromatic equivalence of $k_{4}(1,4,4, d, e, f)$. Master's thesis, Universiti Sains Malaysia, Penang, Malaysia.

Catada-Ghimire, S. and Hasni, R. (2014). New result new result on chromaticity of k_{4}-homeomorphic graphs. International J. Comp. Mathematics, 91:834-843.

Chao, C. and Zhao, L. (1983). Chromatic polynomials of a family of graphs,. Ars Combin., 15:111-129.

Chen, X. and Ouyang, K. (1997). Chromatic classes of certain 2-connected ($\mathrm{n}, \mathrm{n}+2$)- graphs homeomorphic to k_{4}. Discrete Math., 172:17-29.

Guo, Z. and Whitehead Jr., E. (1997). Chromaticity of a family of k_{4} homeomorphs.. Discrete Math., 172:53-58.

Karim, N.S.A., H. R. and Lau, G. (2014). Chromaticity of a family of $k_{4}{ }^{-}$ homeomorphs with girth 9. AIP Conference Proceedings., 1605:563-567.

Koh, K. and Teo, K. (1990). The search for chromatically unique graphs,. Graphs Combin., 6:259-285.

Li, W. (1987). Almost every k_{4}-homeomorphs is chromatically unique. Ars Combin., 23:13-36.

Peng, Y. (2004). Some new results on chromatic uniqueness of $k_{4^{-}}$ homeomorphs. Discrete Math., 288:177-183.

Peng, Y. (2008). Chromatic uniqueness of a family of k_{4}-homeomorphs. Discrete Math., 308:6132-6140.

Peng, Y. (2012). A family of chromatically unique k_{4}-homeomorphs. Ars Combin., 105:491-502.

Peng, Y. and Liu, R. (2002). Chromaticity of a family of k_{4}-homeomorphs. Discrete Math., 258:161-177.

Ren, H. (2002). On the chromaticity of k_{4}-homeomorphs. Discrete Math., 252:247-257.

Shi, W. (2011). On the critical group and chromatic uniqueness of a graph. Master's thesis, University of Science and Technology of China, P. R. China.

Shi, W., Pan, Y. I., and Zhao, Y. (2012). Chromatic uniqueness of k_{4} homeomorphs with girth 8. J. Math. Research Applications, 32:269-280.

Whitehead Jr., E. and Zhao, L. (1984). Chromatic uniqueness and equivalence of k_{4}-homeomorphs. Journal of Graph Theory, 8:355-364.

Xu, S. (1991). A lemma in studying chromaticity. Ars Combin., 32:315-318.
Xu, S. (1993). Chromaticity of a family of k_{4}-homeomorphs. Discrete Math., 117:293-297.

